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Note 

On the Systolic Calculation of All-Pairs Interactions 
Using Transputer Arrays 

The parallelization methods of the molecular dynamics (MD) algorithms depend 
on the interprocessor connection topology of the multiprocessor array as well as on 
the characteristics of the simulated physical system, and in particular on the 
particle-particle interactions. Furthermore, the parallelism grain to be adopted is 
determined by the ratio between the size of the simulation box and the range of the 
interparticle potentials. Thus, if the latter is comparable with the size of the simula- 
tion box, a fine grain approach is most suitable, where all-pair interactions have to 
be calculated. This was the case in previous concurrent MD program implementa- 
tions concerning Lennard-Jones particles and water molecules on transputer based 
systems [l, 21. Additional alternative schemes have been described in Refs. [3, 41. 
The present note describes a conceptually simpler formulation and an improved 
implementation of the systolic approach to the same problem of computing all- 
pairs interactions. 

Consider a system of N molecules whose pairwise interactions have to be 
evaluated. For the sake of clarity, we start examining the case of an odd number 
of processors P and a particle number N which is a multiple of P, i.e., N = nP. 
These assumptions will be relaxed in the following. In our implementation, P iden- 
tical processes run concurrently on P transputers which are connected by com- 
munication channels to form a circular pipeline. Each process receives data from 
the neighboring process on one side and sends data to the neighboring process on 
the other side. Thus, P data packets consisting of coordinates and forces corre- 
sponding to groups of n particles, are circulated round the ring in a synchronized 
manner which is called systolic [S]. 

Each process starts each MD integration step by making a copy of its data 
packet. One packet will remain in its “home” process, while the copy will be systoli- 
tally passed along the ring, coming back to its home process in P pulses. 
Initially-that is, in the zeroth pulse-the n(n - 1)/2 interactions within the resident 
n-particle groups are evaluated. Then, P - 1 pulses of systolic calculations will 
follow in which interactions among fixed and circulating packets are evaluated. In 
each of the first (P - 1)/2 pulses, n(n + 1)/2 interactions are evaluated, whereas in 
each of the remaining (P - 1)/2 pulses, n(n - 1)/2 interactions are calculated. To 
bring each circulating data packet back to its home process a further pulse of pure 
communication is needed. In the home process the fixed and circulating force 
vectors are added to yield the total force acting on each particle. At this point, each 
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FIG. 1. (A) Interaction matrix A for a system of 20 particles. Since A is symmetric, only the 
evidenced strictly lower triangular part has to be evaluated. (B) Decomposition of the interaction matrix 
A into square submatrices for the case of particle number N=20 and processor number P= 5. Each 
column of P submatrices is assigned to the indicated processor. The dotted regions are not calculated. 
The strictly lower triangular parts of the submatrices are labeled by the systolic pulse number in which 
they are evaluated. The subdiagonals of A (labeled by x) are calculated in the “extended” (see text) 
systolic pulses 1 and 2. (C)The same as in (B) for the case of an even number of processors (P=4). 
The systolic pulse 2 is “extended” only for processors 1 and 2. (D) Unbalanced processor loading for the 
case of N = 21 and P = 4. The particle indexing within each submatrix is indicated. As in (C) the systolic 
pulse 2 is “extended” only for processors 1 and 2. 
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process updates the coordinates of its own particles by integration of Newton’s 
equation using some numerical method-e.g., Verlet’s formulas [6]. 

To show that the systolic loop method outlined above enables one to evaluate all 
pair interactions without any duplication, we will refer to the N x N symmetric 
matrix A of interactions shown in Fig. 1A for the N = 20 case. This matrix can be 
decomposed into P* square disjoint submatrices of order n. The diagonal elements 
of P of them coincide with diagonal elements of A. We shall refer to these sub- 
matrices as DGL. The remaining P(P - 1) are two by two transposed. Moreover, 
the strictly lower triangular part (SLTP) of A is made up of P(P - 1)/2 submatrices 
which will be called “internal,” and by the SLTP of the P DGL matrices. Each 
internal matrix has its transposed in the upper triangular part of A. 

In the zeroth systolic pulse, each processor evaluates the SLTP of the DGL 
matrix that corresponds to the interactions among its own particles. To understand 
how the remaining SLTP of A can be evaluated, maintaining virtually perfect the 
load balance among processors, it is convenient to think that a column of P square 
submatrices is assigned to each processor, as shown in Fig. 1B. In the ith pulse of 
the systolic loop, each processor evaluates the SLTP of that of its submatrices, 
which is labeled by i. In this way, during each pulse all processors calculate 
the same number of interactions. Further, no calculation is duplicated. Indeed, 
examining the submatrices attributed to any processor pair, one can see that they 
are completely different, except for two of them which are transposed. In the latter 
case, the evaluation by both processors of the SLTP of their own matrices is 
equivalent to the evaluation of the whole submatrix except for its diagonal 
elements. Thus, if in every pulse only the SLTP of each submatrix is evaluated, after 
P pulses P - 1 subdiagonals of the SLTP of the A matrix would still remain to be 
calculated, i.e., those subdiagonals whose elements (labeled by x in Fig. 1B) 
coincide with the diagonals of the internal submatrices. The natural synchroniza- 
tion of the submatrix evaluation by concurrent processes, which is imposed by the 
systolic data flow described above, helps to avoid this difficulty. Indeed, during 
each systolic pulsedifferent from the zeroth one-the evaluation by each 
processor of the diagonal elements of its submatrix results in the evaluation of two 
subdiagonals of A. Therefore, all P - 1 subdiagonals of A can be evaluated if in the 
first (P - 1)/2 pulses the whole lower triangular part of the submatrices is 
evaluated. In the following we shall refer to these calculation pulses as “extended 
pulses.” 

This method does not show any idiosyncrasy concerning the number of 
processors or the particle to processor number ratio. Indeed, it is applicable also 
if the processor number is even, as shown in Fig. 1C. The only difference with 
respect to the above discussed case of an odd number of processors concerns the 
evaluation of the P - 1 subdiagonals of the A matrix. Since their number is odd in 
this case, the first P - 2 of them are evaluated in (P - 2)/2 extended pulses, and 
the last is evaluated in a further pulse which is extended only for the first half of 
the processors and normal for the others. This causes a slight unbalance of the 
processor computational load which is of the order of l/N. 
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The present method can also be applied when the particles are not evenly dis- 
tributed onto processors (Fig. 1D). This feature is useful, e.g., in solid-state simula- 
tions when N, being restricted by symmetry requirements of the basic cell, is not a 
multiple of the processor number. In this case, the P submatrices assigned to each 
processor are not all square matrices. Therefore, it willgenerally be impossible to 
speak about SLTP or diagonals of submatrices. Nevertheless, a strict analogy still 
holds true between an “unbalanced” case (e.g., Fig. 1D) and the corresponding 
“balanced” one (Fig. 1C). Thus, instead of evaluating the SLTP of a square 
submatrix (as in the balanced case), each processor calculates the interactions 
among its home particles and the particles labeled by higher indexes within the 
relevant submatrix. Furthermore, in the extended pulses the interactions among 
particles with the same index are also included. 

The neighbor list acceleration device can be easily added to this method, since at 
each MD time step a given processor evaluates the interactions involving its home 
particles. Thus, it can set up a neighbor list in its local memory and use it on sub- 
sequent time steps. Likewise, a spherical cutoff can be used, though some degree of 
workload unbalance can result [4]. A concurrent Occam [7] implementation of 
this method has been carried out for MD simulation of water molecules interacting 
via ST2 potentials [S], which can be parametrically adapted to any particle and 
processor numbers. To perform our tests, various transputer arrays were used, each 
of them being organized according to a ring topology using two serial links 
per transputer. In Table I, results are reported concerning execution time values 
(for a time step of 5 * lo-l4 s) that have been obtained by simulating a system 
of 216 water molecules on transputer arrays and on a VAX-11/750 computer 
equipped with floating point accelerator. Values are also reported of the system 
efficiency E, which are obtained by the expression 

TABLE I 

Execution Time (in s) per Molecular Dynamics Time-Step (5. lo-l4 s) and 
Efficiency for a System Consisting of 216 Water Molecules Interacting via ST2 

Potentials 

Algorithm type Computer Exec. time (s) Efficiency 

Sequen. (Fortran) VAX- 1 l/750 41 
1 T800-20 20 

Sequen. (Occam) 1 T800-20 12.7 1.00 
Concur. (Occam) 3 T800-20 4.2 1.00 

4 T800-20 3.2 0.99 
6 T800-20 2.2 0.96 
8 T800-20 1.7 0.93 

Nore. Simulated on different computers using sequential (Sequen.) or concurrent 
(Concur.) algorithms. 
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where T1 and Tp are the execution time values for one- and P-transputer systems, 
respectively. A spherical cutoff of 7.8 8, has been used in water-water interaction 
evaluation. 
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